Сварка и пайка в вакууме

Сварка в вакууме предназначена для получения неразъёмных соединений элементов приборов, деталей (узлов) конструкций машин, используемых в точном машиностроении, микроэлектронике, при создании атомных реакторов и пр. [12]. Различают два вида сварки в вакууме − электроннолучевая сварка (сварка плавлением) и термодиффузионная сварка (сварка давлением).


Электроннолучевая сварка осуществляется в вакууме при давлении остаточных газов 10^-1−10^-3Па с помощью установки, включающей в себя вакуумную рабочую камеру, электроннооптическую систему, формирующую электронный луч, различные приспособления для перемещения свариваемых деталей к электроннооптической системе и откачную систему [10]. Установка включает в себя сварочный пост, энергокомплекс, вакуумную откачную систему, шкафы и пульт управления, комплект соединительных кабелей и трубопроводов. Установка позволяет выполнять линейную и круговую аксиальную сварку в вакууме при рабочем давлении в вакуумной камере 5x10^-1−5x10^-3Па [13].
Начиная с 60х годов, электроннолучевую сварку используют в производстве двигательных установок ракетнокосмических комплексов. Её применение для получения неразъёмных соединений в сочетании с новыми высокопрочными материалами позволило создать двигатели нового поколения с высокими эксплуатационными характеристиками. Так, в НПО "Техномаш" освоена электроннолучевая локальная сварка в вакууме узлов значительных габаритов, например, кольцевых секций топливных баков носителя "Энергия" из термически управляемого алюминиевого сплава. Новая перспективная область применения электроннолучевой сварки − работы в условиях космического пространства [14]. Электроннолучевая сварка широко применяется в технологии микроэлектроники, а также при герметизации металлостеклянных корпусов электронных вакуумных приборов, для сварки тугоплавких, химически активных и разнородных материалов, изделий из стали. Термодиффузионная сварка выполняется в вакууме при разрежении 10^-3−10^-2 Па с нагреванием места сварки до 0,4−0,8 от температуры плавления свариваемых материалов; при сварке разнородных материалов температурный нагрев определяется по температуре менее тугоплавкого материала. Таким способом можно сваривать большинство твердых материалов − как однородных, так и разнородных [15, 16]. При соединении трудносвариваемой пары материалов используется промежуточная прокладка.
Диффузионная сварка обеспечивает вакуумплотные, термостойкие и вибропрочные соединения при сохранении высокой точности, формы и геометрических размеров изделия; широко применяется при сварке термокомпенсаторов кристаллов, катодных ножек, замедляющих систем и других узлов и элементов электронных приборов. Сварочные термодиффузионные установки обычно состоят изследующих основных узлов: вакуумная система для получения вакуума в камере, где происходит сварка; система для создания давления на свариваемые детали, а также для подъёма и опускания камеры; электропривод; автоматика. Одно из основных направлений широкого внедрения термодиффузионной сварки − использование технологических процессов с применением термокомпрессионных устройств (ТКУ), позволяющих осуществлять сварку в вакуумных печах общепромышленного назначения.
Принцип действия ТКУ основан на использовании разности коэффициентов термического линейного расширения материалов свариваемых деталей и элементов оснастки для создания и передачи сжимающего усилия на свариваемые детали. В МАИ разработано ТКУ, которое помещают в камеру печи, подвергнутой вакуумированию [17].При нагревании устройства возникает сдавливающее усилие, которое и передается на свариваемые детали. По окончании сварки детали совместно с устройством охлаждают, развакуумируют камеру, извлекают устройство с готовыми изделиями, затем производят разборку устройства и удаляют сваренные детали. Разработанное ТКУ применяется для диффузионного соединения в вакууме изделий из магнитных и немагнитных сталей, алюминия, меди, нержавеющей стали, бронзы и пр. Основные преимущества диффузионной сварки: отпадает необходимость применять припои, электроды, флюсы, защитную газовуюсреду; не происходит коробление деталей и изменение свойств металла в зоне соединения. Диффузионную сварку можно применять для получения конструкций самой разнообразной формы. Можно сваривать детали не только по плоскости, но и по конической (корпуса радиоламп), сферической (подпятники), криволинейной (облицовка труб), сложнойрельефной поверхности (слой защитного покрытия мембран) и т.д. Пайка в вакууме − процесс получения неразъёмного соединенияпутем нагрева места пайки и заполнения зазора между соединяемыми деталями (из металла и сплавов, стекла, керамики и др.) расплавленным припоем с его последующим отвердением. При пайке деталей из разнородных материалов для обеспечения прочного соединения подбирают материалы с близкими значениями коэффициента термического расширения или используют высокопластичные припои. Вакуумная пайка может быть совмещена с дегазационным отжигом. Различают два способа пайки в вакууме: пайка с локальным источником нагрева дуговым разрядом и высокотемпературная пайка.
В НПО "Техномаш" разработан технологический процесс высокотемпературной пайки слоистых конструкций в вакуумных печах для использования их в современных летательных аппаратах [18]. Применение, например, вакуумной пайки для изготовления многослойных теплообменников из алюминиевых сплавов обеспечивает получение паяных соединений, не уступающих по прочности и коррозионной стойкости основному материалу, что позволяет значительно увеличить ресурс работы и эксплуатационную надежность узлов. Процесс осуществляется в вакуумной печи периодического действия, в которой можно выполнять одновременную пайку (35) слойных теплообменников. Мощность печи 200 кВт, давление 102−103 Па, максимальная рабочая температура 750°с.
Процесс дуговой пайки сочетает преимущества способов сварки плавлением и высокотемпературной пайки с общим нагревом в вакууме и контролируемой атмосферой [17]. Полученные таким образом неразъёмные соединения обладают повышенной жаропрочностью и термостойкостью и могут применяться при изготовлении и ремонте деталей газотурбинных двигателей из литейных высокопрочных сплавов [19].